

Developments in Biogas Cleaning & Upgrading Technologies

Frank Scholwin (Institute for Biogas, Waste Management & Energy, Weimar)

Johan Grope (Institute for Biogas, Waste Management & Energy, Weimar)

01.10.2014

www.biogasundenergie.de

Eegmond an Zee

Institute for Biogas, Waste Management and Energy

A view into the early history – drivers & competition

R&D activities

Alternative use of local available (renewable) fuel

Water Scrubber

Chemical scrubbers

Membrane

Organic scrubbers

Landfill & Sewage sludge gas

+ organic waste, manure....

PSA

© 2014 Institut für Biogas, Kreislaufwirtschaft & Energie, Prof. Dr.-Ing. Frank Scholwin

www.biogasundenergie.de

A view into the developing history – drivers & competition

R&D activities

Strategic enforcement & incentives

Alternative use of local available renewable fuel

Water Scrubber

Amine scrubbers

Organic scrubbers

Landfill & Sewage sludge gas

+ organic waste, manure....

Membrane

UK, I, Asia, N?

🖸 2014 Institut für Biogas, Kreislaufwirtschaft & Energie, Prof. Dr.-Ing. Frank Scholwir

www.biogasundenergie.de

A view into the last years history – drivers & competition

Strong environmental requirements

Strategic enforcement & incentives

Intensive competition

New markets

Increased use of the only available alternative to natural gas

Developments – biogas cleaning

- Independent on application, cleaning is most important to reduce maintenance & upgrading costs
- Biogas drying: technical drying promises less corrosion & longer maintenance intervals, zeolites are an option
- Desulphurisation: no clear trend
 - Internal biological: cost efficient for 1st stage; but N₂-source
 - Internal chemical: costly
 - External: most efficient
 - Biological processes
 - Adsorption
- O₂ removal with ABC₄O₇ materials

A = rare earth element; B = Barium C = Cobalt

Developments – upgraded gas quality

- All required gas specifications of European gas grids can be fulfilled
- High pressure transmission & underground gas storages: oxygen concentration requirements still a challenge
- All impurities can be reduced to the detection limits
 - Landfill gas upgrading is an increasing topic (out of central Europe)
- Development of methods and measurement standards (e.g. European Metrology Research Programme)

Source: Persson 2014, IEA task 37

© 2014 Institut für Biogas, Kreislaufwirtschaft & Energie, Prof. Dr.-Ing. Frank Scholwin

www.biogasundenergie.de

Developments – methane slip

- Increased environmental requirements & cost efficiency are drivers
- Slip is reduced from ~10 % in the first plants to less than 2 % at all technologies today
- < 1% at water scrubbers, membranes with more stages, organic scrubbers
 </p>
- Increased selectivity of membranes
- Typically less than 0.5% can be guaranteed
- Regularly used for process heat supply
- Oxydation technologies available at all technology suppliers

Developments – energy consumption

- Increased environmental requirements & cost efficiency are drivers for R&D activities
- Decreased operational pressures (water scrubber, amine scrubber, organic scrubbers, PSA)
- Decreased/optimised temperature (water scrubber, amine scrubber – e.g. desorption with vacuum at temperatures below 100 °C)
- Use of internally availabel heat sources (e.g. compressors)
- Combination of both (amine scrubber) for site adaption
- Improved amine mixtures & enzyme additives

© 2014 Institut für Biogas, Kreislaufwirtschaft & Energie, Prof. Dr.-Ing. Frank Scholwin

www.biogasundenergie.de

Developments – new markets

- LNG market develops LBG is an additional option for biogas
 - Higher energy density
 - Increased efforts & energy demand for production
- Pure Liquid Carbon Dioxide as valuable by product
- Synergies with PtG technologies and gasification
- Biomethane as carbon resource in Biorefineries

Developments – technologies & synergies

- Technology combinations offer improved operational performance or better product quality
- Waste heat utilisation (e.g. from compressors & RTO)
- Small scale upgrading seems to have a market (membranes, water scrubber, PSA)
- Upgrading technologies go towards low cost solutions outsides Europe (Brazil, India)
- Landfill gas will play an increasing role (out of central Europe)
- South America and Southeast Asia seem to be the most growing markets.

© 2014 Institut für Biogas, Kreislaufwirtschaft & Energie, Prof. Dr.-Ing. Frank Scholv

Developments – emerging technologies

- Cryogenic gas separation: 1 pilot plant
- High pressure water scrubber: small scale applications are working
- Some technologies in research scale
 - PCC precipitated calcium carbonate;
 - internal enrichment, pressurised fermentation
 - Ash filter (CO₂ is fixed by calcium oxide under the formation of calcite)
 - Temperature swing adsorption
 - Solid state amine adsorption
- Upgraded biogas will play a role in Power to Gas technologies
 - Renewable CO₂ source
 - Combined with electrolysers increased methane yields (microbial methane enrichment)

Specific investment costs

Differences in requirements for gas pretreatment, waste gas treatment, pressure, gas quality, energy consumption and heat recovery will affect the total budget.

Source: Persson 2014, IEA task 37

© 2014 Institut für Biogas, Kreislaufwirtschaft & Energie, Prof. Dr.-Ing. Frank Scholwin

www.biogasundenergie.de

Specific energy demand

To be observed: product gas is supplied at different pressures!

Source: Persson 2014, IEA task 37

- Rapid market growth in Europe and international
- Process efficiency raised strongly in the past
 - Energy demand and waste energy utilisation
 - Reduced methane slip
 - Increased methane recovery
- No general advantages of a single technology visible
- High dependency on the given economical framework
- Local situation defines technology choice

REGATEC 2015

7-8 May 2015, Barcelona

Join REGATEC 2015!

REGATEC 2014:

160 people from 25 countries 30 exhibitors

Don't miss REGATEC 2015 in Barcelona, Spain. The major conference in the biogas, gasification and Power-to-gas sector!

Conference topics

- Anaerobic digestion/gas cleaning/upgrading
- Gasification of biomass and waste/syngas cleaning/methanation
- Power-to-gas
- Biomass gasification for CHP production

www.regatec.org

Biogas – Key technology in Energy and material cycle of the future

Prof. Dr.-Ing. Frank Scholwin
Institute for Biogas, Waste Management & Energy

Henßstraße 9, D-99423 Weimar Tel +49 (0)3643 - 7 40 23 64 Mobil +49 (0)177 - 2 88 56 23 Fax +49 (0)3643 - 7 40 23 63 scholwin@biogasundenergie.de

www.biogasundenergie.de

You want to go
deeper into
renewable
gas technologies?
Come to:

2nd Renewable Gas Technology Conference 7-8 May 2015, Barcelona

www.regatec.org

2014 Institut für Biogas, Kreislaufwirtschaft & Energie, Prof. Dr.-Ing. Frank Scholwin

21

www.biogasundenergie.de